首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51554篇
  免费   1066篇
  国内免费   351篇
测绘学   1331篇
大气科学   3483篇
地球物理   11865篇
地质学   17647篇
海洋学   4222篇
天文学   11751篇
综合类   140篇
自然地理   2532篇
  2021年   553篇
  2020年   619篇
  2019年   580篇
  2018年   1402篇
  2017年   1279篇
  2016年   1653篇
  2015年   1012篇
  2014年   1523篇
  2013年   2717篇
  2012年   1734篇
  2011年   2119篇
  2010年   1915篇
  2009年   2565篇
  2008年   2120篇
  2007年   2067篇
  2006年   1901篇
  2005年   1457篇
  2004年   1471篇
  2003年   1361篇
  2002年   1252篇
  2001年   1150篇
  2000年   1037篇
  1999年   875篇
  1998年   915篇
  1997年   881篇
  1996年   694篇
  1995年   783篇
  1994年   718篇
  1993年   605篇
  1992年   558篇
  1991年   568篇
  1990年   650篇
  1989年   534篇
  1988年   497篇
  1987年   619篇
  1986年   532篇
  1985年   658篇
  1984年   734篇
  1983年   701篇
  1982年   634篇
  1981年   648篇
  1980年   547篇
  1979年   520篇
  1978年   532篇
  1977年   478篇
  1976年   451篇
  1975年   466篇
  1974年   436篇
  1973年   492篇
  1971年   320篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
82.
This study investigates the possible correspondence between catchment structure, as represented by perceptual hydrological models developed from fieldwork investigations, and mathematical model structures, selected on the basis of reproducing observed catchment hydrographs. Three Luxembourgish headwater catchments are considered, where previous fieldwork suggested distinct flow‐generating mechanisms and hydrological dynamics. A set of lumped conceptual model structures are hypothesized and implemented using the SUPERFLEX framework. Following parameter calibration, the model performance is examined in terms of predictive accuracy, quantification of uncertainty, and the ability to reproduce the flow–duration curve signature. Our key research question is whether differences in the performance of the conceptual model structures can be interpreted based on the dominant catchment processes suggested from fieldwork investigations. For example, we propose that the permeable bedrock and the presence of multiple aquifers in the Huewelerbach catchment may explain the superior performance of model structures with storage elements connected in parallel. Conversely, model structures with serial connections perform better in the Weierbach and Wollefsbach catchments, which are characterized by impermeable bedrock and dominated by lateral flow. The presence of threshold dynamics in the Weierbach and Wollefsbach catchments may favour nonlinear models, while the smoother dynamics of the larger Huewelerbach catchment were suitably reproduced by linear models. It is also shown how hydrologically distinct processes can be effectively described by the same mathematical model components. Major research questions are reviewed, including the correspondence between hydrological processes at different levels of scale and how best to synthesize the experimentalist's and modeller's perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
83.
Thanks to its simple division into agricultural and forestry land use, the Corbeira catchment (Galicia, Spain) is used as a case study to build a predictive model using hydrogeochemical signatures. Stream data acquired under recessional flow conditions over a one year period were obtained from a sampling station near the downstream end of the catchment, and using principal component analysis, it is shown that some of the analytical parameters are covariant, and some are negatively correlated. These findings support inferences about the pathways of rainfall in the catchment. Specific signatures may be associated with the dominant hydrological source, either surface runoff or subsurface waters: additionally, the dominant land use in that part of the catchment, where the flow originated, can also be predicted. The dominant runoff shows a strong covariance between suspended solids (SS) and particulate phosphorus (PP), with a clear negative correlation with pH. Dissolved organic carbon (DOC) data are associated with this covariant set when these compounds are available in the soils in question. Dissolved phosphorus, total organic nitrogen and dissolved nitrates are also associated with the same covariant set when the runoff flows through areas of extensive agricultural use. The SS ? PP covariance is less significant at lower flows. Typical base flow regimes show a significant covariance between salinity and pH, with a marked negative correlation with SS ? PP set, confirming the dominance of subsurface waters in the baseflow, as expected. Seasonally divergent DOC ? SS behaviour proves to be a useful tracer for rainfall regimes. The DOC trend shows a sinusoidal annual variation in amplitude, determined by the rainfall regime. As a result, flow from the catchment is dominated by surface water whenever there is synchronicity between the peaks of DOC and SS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
84.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
85.
Devonian sediments of the Malaguide Complex potentially could include the Frasnian–Famennian boundary, one of the five greatest Phanerozoic biotic crises. Conodont biofacies and microfacies of carbonate clasts from a pebbly mudstone underlying Tournaisian radiolarites allows identification, for the first time in the Malaguide Complex, of Devonian shallow marine environments laterally grading to deeper realms. The clasts yielded Frasnian conodont associations of the falsiovalis to rhenana biozones, with six biofacies that reveal different environmental conditions in their source areas. Source sediments were dismantled and redeposited within the pebbly mudstone, whose origin is tentatively related to one of the events that are associated worldwide with the Frasnian–Famennian crisis. The latter is recorded, in two equivalent Malaguide pelagic successions, by stratigraphic discontinuities, and it was, probably, tectonically and/or eustatically controlled, as in other Alpine‐Mediterranean Paleotethyan margins.  相似文献   
86.
Doklady Earth Sciences - The first U–Pb (LA–ICP–MS) isotope dating of detrital zircons from quartzites of two strata of the Maksyutov metamorphic complex (Southern Urals) was...  相似文献   
87.
Astronomy Letters - Evidence of wind variability and velocity stratification in the extended atmosphere has been found in the spectra of the supergiant V340 Ser ( $${=}$$ IRAS 17279 $$-$$ 1119)...  相似文献   
88.
Sediment is sorted in river bends under the influence of gravity that pulls the heavier grains downslope and secondary flow that drags the finer grains upslope. Furthermore, when dunes are present, sediment is also sorted vertically at the dune lee side. However, sorting functions are poorly defined, since the relation to transverse bed slope and the interaction between lateral and vertical sorting is not yet understood for lack of data under controlled conditions. The objective of this study is to describe lateral sorting as a function of transverse bed slope and to gain an understanding of the interaction between lateral and vertical sorting in river bends. To this end, experiments were conducted with a poorly sorted sediment mixture in a rotating annular flume in which secondary flow intensity can be controlled separately from the main flow velocity, and therefore transverse bed slope towards the inner bend and dune dimensions can be systematically varied. Sediment samples were taken along cross-sections at the surface of dune troughs and dune crests, and over the entire depth at the location of dune crests (bulk samples), which enabled comparison of the relative contribution of vertical sorting by dunes to lateral sorting by the transverse bed slope. The data show that lateral sorting is always the dominant sorting mechanism in bends, and bulk samples showed minor effects of vertical sorting by dunes as long as all grain-size fractions are mobile. An empirical bend sorting model was fitted that redistributes the available sediment fractions over the cross-section as a function of transverse bed slope. Comparison with field data showed that the model accurately reproduces spatially-averaged trends in sorting at the bend apex in single-thread channels. The bend sorting model therefore provides a better definition of bend sorting with conservation of mass by size fraction and adds to current understanding of bend sorting. The implication for numerical modelling is that bend sorting mechanisms can be modelled independently of dunes, allowing the application of the active layer concept.  相似文献   
89.
Lithology and Mineral Resources - The Haléo-Danielle Plateau bauxite deposit forms the largest part of the 15 km long Minim-Martap Bauxite ore district in the Adamawa Region of Cameroon. The...  相似文献   
90.
Lithology and Mineral Resources - Distribution of carbonate sediments of different composition in the Precambrian section is reviewed. It is shown that calcium carbonates prevailed in the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号